La tortue, reine de la glisse

Le ski idéal doit paraît-il allier rigidité pour accrocher la neige dans les courbes et souplesse pour être maniable en entrée et en sortie de virage. Or les skis actuels sont soit souples, pour les skieurs intermédiaires, soit rigides pour les experts. Pour réunir ces deux caractéristiques apparemment incompatibles, Véronique Michaud, du laboratoire de technologie des composites et polymères de l’EPFL (Ecole Polytechnique Fédérale de Lausanne), a eu l’idée de se baser sur la morphologie de la tortue alors qu’elle assistait à un séminaire sur les matériaux bio-inspirés.

«Les écailles de la tortue sont imbriquées entre elles, à l’image d’un puzzle et liées par un polymère» explique la chercheuse. « Lorsque les tortues respirent, les écailles s’écartent légèrement, et la surface est souple. Mais lorsqu’un choc survient, la carapace se bloque et se rigidifie. J’ai tout de suite pensé que l’on pourrait implémenter ces caractéristiques dans un ski. » Cette idée s’est concrétisée dans un partenariat entre l’EPFL et l’entreprise suisse Stöckli.

Pour reproduire ce phénomène, la solution la plus efficace consiste à placer à l’intérieur du ski une plaque d’aluminium dotée d’une fente en forme de serpent judicieusement placée à l’avant et à l’arrière. Lorsque le ski se plie dans un virage, les plaques de chaque côté de la fente s’imbriquent entre elles, et le ski se rigidifie, ce qui permet d’effectuer des virages précis et stables. A la sortie du virage, la fente dans la plaque s’écarte légèrement, le ski redevient souple, et il est possible de conduire le ski avec une grande finesse. «Ici, l’aluminium se comporte comme les écailles, et une couche spéciale en caoutchouc entre les couches représente le polymère de la carapace» précise Véronique Michaud.

Les skis équipés de cette solution baptisée « turtle shell » sont en vente depuis 2016, « aussi bien pour des skieurs moyens, qui cherchent à déclencher des virages sans trop d’efforts, que pour des skieurs aguerris, qui pourront en tirer le meilleur parti ».

Pour ma part et sur la base de ma seule première étoile, je m’en tiendrai aux raquettes et partirai à point.

 

Photo : Mauro Paillex sur Unsplash

Pour aller plus loin :

Des skis inspirés des écailles de tortue

Stoeckli turtle-shell technology

 

Des voitures à croquer

Dans les années 30, Henry Ford avait demandé à ses bureaux d’études de plancher sur l’introduction de matériaux biosourcés (1) dans les voitures. C’est ainsi que fut présentée le 14 août 1941 la Hemp Body Car : la voiture à carrosserie en chanvre. Si le châssis et quelques renforts étaient encore métalliques, la carrosserie était à base de graines de chanvre et de soja, de fibres de sisal et de paille de blé !

Quatre mois plus tard, l’attaque de Pearl Harbor entraînait les Etats-Unis dans la seconde guerre mondiale, remisant la voiture au garage. Un garage dont elle ne ressortit pas après le conflit : le pétrole n’était pas cher, les polymères synthétiques en profitaient pour prendre leur envol…

Un peu moins de cent ans se sont écoulés et le contexte économique et environnemental a bien changé. Où en est FORD avec « la paille et le grain » ? Si l’on en croit un article de Plastics Technology, Henry Ford serait ravi de constater que ses équipes avancent sur le sujet.

Quelques exemples ? FORD a introduit en 2008 sur la Mustang des mousses à base d’huile de soja pour les sièges et les appuie-têtes. Depuis 2011, ces mousses sont utilisées sur tous les véhicules commercialisés en Amérique du Nord. La paille de blé remplace le talc comme renfort dans le plastique (du polypropylène ou PP) des habillages intérieurs avec à la clé un allègement de l’ordre de 10%. Le constructeur travaille avec un fabricant de ketchup sur la ré-utilisation de ses peaux de tomate ainsi qu’avec un producteur de tequila dont les fibres d’agave (après extraction du jus destiné à la distillation) pourraient également être à l’origine de nouveaux matériaux.

FORD étudie aussi de près les algues et même le pissenlit russe (Taraxacum kok-saghyz). Car le pissenlit est une source de latex, comme l’hévéa. Si, si, vous le saviez forcément : qui n’a pas cueilli au moins une fois un pissenlit pour souffler sur son aigrette et se poisser les doigts avec le suc s’écoulant de la tige coupée ? Ce suc, c’est du latex et du latex on fait tout simplement… des pneus.

 

(1) Un matériau « biosourcé » est fabriqué à partir de ressources renouvelables (maïs, lin, algues…) et non pas de ressources fossiles comme le pétrole et le charbon.

Un béton bio-inspiré (un sujet qui ne manque pas de piquant)

Avant d’être un blog, Métamorphoses était une publication « papier ». Début 2012, j’y relatais qu’une équipe internationale de scientifiques avait proposé une interprétation de la structure des épines d’oursin ouvrant selon eux des perspectives pour la fabrication de bétons plus performants.

Les épines d’oursin sont en effet essentiellement constituées de carbonate de calcium. Si je vous dis « craie » vous voyez mieux de quoi il s’agit… En principe, ce matériau est très fragile. Marcher sur un oursin ne devrait donc pas être un problème : les épines devraient casser sous le pied de l’imprudent. Mais chacun sait, par expérience ou par instinct, que ce n’est pas le cas et qu’il vaut mieux faire un détour. Pourquoi les épines d’oursin ne sont-elles pas friables comme de la craie ?

L’équipe en question indiquait qu’à l’échelle nanométrique, ces épines sont en fait organisées comme un mur de « briques » reliées entre elles par un « mortier ». Briques et mortier sont également constitués de carbonate de calcium, mais organisé de deux façons différentes. Les briques sont de la calcite, une forme cristalline et cassante de ce minéral, tandis que le mortier est une forme amorphe présentant une certaine élasticité. Lorsqu’une force est appliquée sur la calcite, le bloc cristallin se fend. Mais l’énergie est transférée au mortier qui la dissipe, empêchant la casse.

Six ans plus tard, un « ciment inspiré de la structure cristalline de la calcite qui compose les épines d’oursins a été synthétisé par une équipe de scientifiques allemands« . L’article publié dans Materials Science rappelle que le béton, s’il présente une grande résistance à la compression, a l’inconvénient de manquer d’élasticité et de n’offrir qu’une faible résistance à la torsion. C’est pourquoi il est souvent renforcé avec des barres d’acier.

Pour améliorer ses propriétés, les scientifiques se sont inspiré des oursins. En organisant de façon très fine des zones minérales rigides et des zones polymères élastiques dans un ciment, ils ont obtenu un béton dont la résistance à la flexion serait quarante à cent fois supérieure à celle de bétons traditionnels.

Prix de l’inventeur européen 2017

La nouvelle arme fatale aux déversements de pétrole et de produits chimiques est… une éponge !

Il s’agit d’une cire synthétique mise au point par Günter Hufschmid et son équipe de la société allemande Deurex. Cette cire peut adsorber jusqu’à sept fois son poids en liquides hydrophobes sans retenir d’eau, ce qui en fait l’outil idéal pour nettoyer les déversements et fuites, quel que soit l’endroit où ils se produisent : dans votre garage ou autour d’une plateforme de forage pétrolier en mer.

Décerné par l’Office Européen des Brevets, le Prix de l’Inventeur Européen 2017 (catégorie Petites et Moyennes Entreprises) a été attribué à Günter Hufschmid pour cette cire qu’il a appelée « Pure ». Par rapport aux agglomérants existants, Pure agirait plus rapidement, adsorberait plus de contaminants en laissant derrière elle moins de résidus et surtout serait ré-utilisable après essorage.

Alors qu’il essayait de mettre au point un nouveau type de cire micronisée, un employé de la société Deurex a laissé une machine tourner une nuit entière avec des paramètres de température et de pression incorrects. Le lendemain matin, le sol était recouvert d’une substance duveteuse et fibreuse que les employés ont rapidement surnommé « coton magique ». La société Deurex a donc trouvé avec Pure autre chose que ce qu’elle cherchait… C’est un cas typique de sérendipité, néologisme calqué sur l’anglais « serendipity ». Le terme serendipity a été inventé en 1754 par Horace Walpole, qui désigne ainsi des « découvertes inattendues, faites par accidents et sagacité » et par « sagacité accidentelle ». La découverte de l’Amérique par Christophe Colomb est un bel exemple de sérendipité, tout comme l’invention du Post-It.

En 2010, année d’invention de Pure, la catastrophe de Deepwater Horizon a causé l’écoulement de près de 770 millions de litres de pétrole dans les eaux environnantes du Golfe du Mexique, ce qui n’en faisait « que » la quatrième plus importante marée noire de l’histoire. La gestion des déversements d’hydrocarbures représentait alors un marché d’environ 13 milliards d’euros  à l’échelle mondiale et devrait nettement augmenter pour atteindre 118 milliards d’euros d’ici 2020. En effet, si le nombre de déversements est en baisse, les transports de pétrole (par voie maritime ou pipeline terrestre) augmentent et les gouvernements font davantage appel aux technologies de gestion des déversements.

Des négociations sont en cours entre Deurex et des acteurs de l’industrie pétrolière. La société espère que son nouveau produit lui permettra de s’imposer sur ce marché. Pendant ce temps-là, que fait donc Bob l’Eponge ?

Comment je m’habille aujourd’hui ?

Nous devons « Comment je m’habille aujourd’hui ? Le style de la Parisienne », paru en 2016, à Inès de la Fressange et Sophie Gachet. Voilà un guide sans doute fort utile – a minima pour les Parisiennes- mais un peu court quand il s’agit d’aller, non pas au bureau ou en soirée mais bien sur Mars.

En soumettant des souris à un rayonnement comparable à celui auquel s’exposent les astronautes dans l’espace, Charles Limoli, chercheur à l’Université de Californie à Irvine et ses collègues ont observé des troubles cognitifs importants et durables, qui se retrouveraient probablement chez les humains et compromettraient potentiellement le succès des missions spatiales. Si les astronautes de la Station spatiale internationale, en orbite relativement basse (à environ 400 km d’altitude) sont protégés par le champ magnétique terrestre, le voyage vers Mars et au-delà est une autre paire… de manches comme diraient les modeuses.

En clair, le style de la Martienne, c’est la combinaison intégrale en plomb. Avouez que ce n’est pas très élégant et surtout, c’est bien trop lourd pour être transporté en orbite. Un sacré challenge en perspective pour les spécialistes des matériaux !

 

Pour en savoir plus : Pour la science n°482, décembre 2017