Qu’est-ce qu’un MOF ?

Il faut se méfier des acronymes. Par « MOF », vous entendez sans doute « Meilleur Ouvrier de France » mais connaissez-vous les « Metal Organic Fameworks » ou réseaux métallo-organiques ?

Leur nom l’indique : les réseaux métallo-organiques sont constitués d’ions métalliques (tels que le fer, le titane, l’aluminium, le cuivre, …) reliés entre eux par des groupes « organiques », donc à base de carbone et leur intérêt réside dans leur exceptionnelle porosité.

Ils sont en effet « nanoporeux », comme le charbon actif, les zéolithes ou les silices, donc plein de pores minuscules ce qui fait que leur surface réelle est très supérieure à leur surface « apparente ». Si vous avez du mal à me suivre, imaginez deux feuilles de papier de la même aire apparente (par exemple, deux carrés de 10 par 10 cm) : l’une est lisse et l’autre est plissée comme un éventail. Si vous aplanissez la feuille plissée, alors son aire ne sera plus de 10 par 10 mais (par exemple) de 20 par 10… L’image pourrait aussi être fromagère : la surface réelle d’un morceau d’emmental est supérieure à la surface réelle d’un morceau de gruyère de même taille. En conséquence, plus il y a de trous dans l’emmental, plus il y a en fait… de surface !

A quoi servent les matériaux nanoporeux ? A piéger ou transporter une grande variété de molécules. Le charbon actif est par exemple utilisé pour filtrer l’eau depuis l’Antiquité ou dans les masques à gaz depuis le 19ème siècle. Un gramme de charbon actif a une surface de l’ordre de 1 000 m² (1). Ses petits cousins les MOF, observés pour la première fois en 1992, ont une surface de l’ordre de 10 000 m² par gramme… C’est plus qu’un terrain de football ! Ils sont extrêmement prometteurs car ils permettent de stocker des gaz à effet de serre comme le CO2 ou le méthane, ou encore de l’hydrogène afin de produire de l’électricité renouvelable. Autre exemple : des chercheurs de l’université de Berkeley et du MIT ont uni leurs efforts et présenté début 2017 une preuve de concept combinant l’énergie solaire et un MOF à base de zirconium pour collecter l’eau présente dans l’air, même dans un environnement désertique (2).

Par contre, jusqu’à présent les MOF étaient disponibles sous forme de poudres, lesquelles ne sont pas faciles à mettre en oeuvre à l’échelle industrielle. Mais une équipe internationale menée par des chercheurs de l’Institut de recherche de Chimie Paris a récemment fait la couverture de Nature Materials avec une étude qui met en évidence la capacité d’un MOF à base de zinc à garder ses propriétés de porosité à l’état liquide, puis à l’état vitreux. C’est surprenant car, comme le dit joliment le CNRS (3), « l’état liquide n’est pas celui qui favorise la porosité » ! C’est vrai : on peut faire des ronds dans l’eau mais on y voit au final assez rarement des trous… « Ces résultats ouvrent la voie à de nouvelles applications industrielles » : on ne peut que l’espérer, quand il vient d’être annoncé que les émissions mondiales de COsont reparties à la hausse après trois ans d’accalmie.

 

(1) Les réseaux métallo-organiques : des matériaux prometteurs aux nombreuses applications industrielles

(2) This new solar-powered device can pull water straight from the desert air

(3) Quand un solide poreux garde ses propriétés à l’état liquide

Nathalie Pécoul

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *